这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
This article concerns Bayesian inference using deep linear networks with output dimension one. In the interpolating (zero noise) regime we show that with Gaussian weight priors and MSE negative log-likelihood loss both the predictive posterior and the Bayesian model evidence can be written in closed form in terms of a class of meromorphic special functions called Meijer-G functions. These results are non-asymptotic and hold for any training dataset, network depth, and hidden layer widths, giving exact solutions to Bayesian interpolation using a deep Gaussian process with a Euclidean covariance at each layer. Through novel asymptotic expansions of Meijer-G functions, a rich new picture of the role of depth emerges. Specifically, we find that the posteriors in deep linear networks with data-independent priors are the same as in shallow networks with evidence maximizing data-dependent priors. In this sense, deep linear networks make provably optimal predictions. We also prove that, starting from data-agnostic priors, Bayesian model evidence in wide networks is only maximized at infinite depth. This gives a principled reason to prefer deeper networks (at least in the linear case). Finally, our results show that with data-agnostic priors a novel notion of effective depth given by \[\#\text{hidden layers}\times\frac{\#\text{training data}}{\text{network width}}\] determines the Bayesian posterior in wide linear networks, giving rigorous new scaling laws for generalization error.
translated by 谷歌翻译
Vision-based tactile sensors have gained extensive attention in the robotics community. The sensors are highly expected to be capable of extracting contact information i.e. haptic information during in-hand manipulation. This nature of tactile sensors makes them a perfect match for haptic feedback applications. In this paper, we propose a contact force estimation method using the vision-based tactile sensor DIGIT, and apply it to a position-force teleoperation architecture for force feedback. The force estimation is done by building a depth map for DIGIT gel surface deformation measurement and applying a regression algorithm on estimated depth data and ground truth force data to get the depth-force relationship. The experiment is performed by constructing a grasping force feedback system with a haptic device as a leader robot and a parallel robot gripper as a follower robot, where the DIGIT sensor is attached to the tip of the robot gripper to estimate the contact force. The preliminary results show the capability of using the low-cost vision-based sensor for force feedback applications.
translated by 谷歌翻译
Deploying machine learning models in production may allow adversaries to infer sensitive information about training data. There is a vast literature analyzing different types of inference risks, ranging from membership inference to reconstruction attacks. Inspired by the success of games (i.e., probabilistic experiments) to study security properties in cryptography, some authors describe privacy inference risks in machine learning using a similar game-based style. However, adversary capabilities and goals are often stated in subtly different ways from one presentation to the other, which makes it hard to relate and compose results. In this paper, we present a game-based framework to systematize the body of knowledge on privacy inference risks in machine learning.
translated by 谷歌翻译
This paper presents a class of new fast non-trainable entropy-based confidence estimation methods for automatic speech recognition. We show how per-frame entropy values can be normalized and aggregated to obtain a confidence measure per unit and per word for Connectionist Temporal Classification (CTC) and Recurrent Neural Network Transducer (RNN-T) models. Proposed methods have similar computational complexity to the traditional method based on the maximum per-frame probability, but they are more adjustable, have a wider effective threshold range, and better push apart the confidence distributions of correct and incorrect words. We evaluate the proposed confidence measures on LibriSpeech test sets, and show that they are up to 2 and 4 times better than confidence estimation based on the maximum per-frame probability at detecting incorrect words for Conformer-CTC and Conformer-RNN-T models, respectively.
translated by 谷歌翻译
Training a neural network requires choosing a suitable learning rate, involving a trade-off between speed and effectiveness of convergence. While there has been considerable theoretical and empirical analysis of how large the learning rate can be, most prior work focuses only on late-stage training. In this work, we introduce the maximal initial learning rate $\eta^{\ast}$ - the largest learning rate at which a randomly initialized neural network can successfully begin training and achieve (at least) a given threshold accuracy. Using a simple approach to estimate $\eta^{\ast}$, we observe that in constant-width fully-connected ReLU networks, $\eta^{\ast}$ demonstrates different behavior to the maximum learning rate later in training. Specifically, we find that $\eta^{\ast}$ is well predicted as a power of $(\text{depth} \times \text{width})$, provided that (i) the width of the network is sufficiently large compared to the depth, and (ii) the input layer of the network is trained at a relatively small learning rate. We further analyze the relationship between $\eta^{\ast}$ and the sharpness $\lambda_{1}$ of the network at initialization, indicating that they are closely though not inversely related. We formally prove bounds for $\lambda_{1}$ in terms of $(\text{depth} \times \text{width})$ that align with our empirical results.
translated by 谷歌翻译
Deep Learning (DL) models tend to perform poorly when the data comes from a distribution different from the training one. In critical applications such as medical imaging, out-of-distribution (OOD) detection helps to identify such data samples, increasing the model's reliability. Recent works have developed DL-based OOD detection that achieves promising results on 2D medical images. However, scaling most of these approaches on 3D images is computationally intractable. Furthermore, the current 3D solutions struggle to achieve acceptable results in detecting even synthetic OOD samples. Such limited performance might indicate that DL often inefficiently embeds large volumetric images. We argue that using the intensity histogram of the original CT or MRI scan as embedding is descriptive enough to run OOD detection. Therefore, we propose a histogram-based method that requires no DL and achieves almost perfect results in this domain. Our proposal is supported two-fold. We evaluate the performance on the publicly available datasets, where our method scores 1.0 AUROC in most setups. And we score second in the Medical Out-of-Distribution challenge without fine-tuning and exploiting task-specific knowledge. Carefully discussing the limitations, we conclude that our method solves the sample-level OOD detection on 3D medical images in the current setting.
translated by 谷歌翻译
Autonomous vehicle (AV) stacks are typically built in a modular fashion, with explicit components performing detection, tracking, prediction, planning, control, etc. While modularity improves reusability, interpretability, and generalizability, it also suffers from compounding errors, information bottlenecks, and integration challenges. To overcome these challenges, a prominent approach is to convert the AV stack into an end-to-end neural network and train it with data. While such approaches have achieved impressive results, they typically lack interpretability and reusability, and they eschew principled analytical components, such as planning and control, in favor of deep neural networks. To enable the joint optimization of AV stacks while retaining modularity, we present DiffStack, a differentiable and modular stack for prediction, planning, and control. Crucially, our model-based planning and control algorithms leverage recent advancements in differentiable optimization to produce gradients, enabling optimization of upstream components, such as prediction, via backpropagation through planning and control. Our results on the nuScenes dataset indicate that end-to-end training with DiffStack yields substantial improvements in open-loop and closed-loop planning metrics by, e.g., learning to make fewer prediction errors that would affect planning. Beyond these immediate benefits, DiffStack opens up new opportunities for fully data-driven yet modular and interpretable AV architectures. Project website: https://sites.google.com/view/diffstack
translated by 谷歌翻译
Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.
translated by 谷歌翻译
Semantic segmentation of aerial point cloud data can be utilised to differentiate which points belong to classes such as ground, buildings, or vegetation. Point clouds generated from aerial sensors mounted to drones or planes can utilise LIDAR sensors or cameras along with photogrammetry. Each method of data collection contains unique characteristics which can be learnt independently with state-of-the-art point cloud segmentation models. Utilising a single point cloud segmentation model can be desirable in situations where point cloud sensors, quality, and structures can change. In these situations it is desirable that the segmentation model can handle these variations with predictable and consistent results. Although deep learning can segment point clouds accurately it often suffers in generalisation, adapting poorly to data which is different than the training data. To address this issue, we propose to utilise multiple available open source fully annotated datasets to train and test models that are better able to generalise. In this paper we discuss the combination of these datasets into a simple training set and challenging test set. Combining datasets allows us to evaluate generalisation performance on known variations in the point cloud data. We show that a naive combination of datasets produces a model with improved generalisation performance as expected. We go on to show that an improved sampling strategy which decreases sampling variations increases the generalisation performance substantially on top of this. Experiments to find which sample variations give this performance boost found that consistent densities are the most important.
translated by 谷歌翻译